- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Arsenis, Makis (1)
-
Kleinberg, Robert (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In many networking scenarios, long-lived flows can be rerouted to free up resources and accommodate new flows, but doing so comes at a cost in terms of disruption. An archetypical example is the transmission of live streams in a content delivery network: audio and video encoders (clients) generate live streams and connect to a server which rebroadcasts their stream to the rest of the network. Reconnecting a client to a different server mid-stream is very disruptive. We abstract these scenarios in the setting of a capacitated network where clients arrive one by one and request to send a unit of flow to a designated set of servers subject to edge/vertex capacity constraints. An online algorithm maintains a sequence of flows that route the clients present so far to the set of servers. The cost of a sequence of flows is defined as the net switching cost, i.e. total length of all augmenting paths used to transform each flow into its successor. We prove that for unit-vertex-capacitated networks, the algorithm that successively updates the flow using the shortest augmenting path from the new client to a free server incurs a total switching cost of O(n log2 n), where n is the number of vertices in the network. This result is obtained by reducing to the online bipartite matching problem studied in prior work and applying their result. Finally, we identify a slightly more general class of networks for which essentially the same reduction idea can be applied to get the same bound.more » « less
An official website of the United States government
